Forecasting based on state space models for exponential smoothing
نویسنده
چکیده
In business, there is a frequent need for fully automatic forecasting that takes into account trend, seasonality and other features of the data without need for human intervention. In supply chain management, for example, forecasts of demand are required on a regular basis for very large numbers of time series, so that inventory levels can be planned to provide an acceptable level of service to customers.
منابع مشابه
Exponential smoothing and non-negative data
The most common forecasting methods in business are based on exponential smoothing, and the most common time series in business are inherently non-negative. Therefore it is of interest to consider the properties of the potential stochastic models underlying exponential smoothing when applied to non-negative data. We explore exponential smoothing state space models for non-negative data under va...
متن کاملA Pedants Approach to Exponential Smoothing
An approach to exponential smoothing that relies on a linear single source of error state space model is outlined. A maximum likelihood method for the estimation of associated smoothing parameters is developed. Commonly used restrictions on the smoothing parameters are rationalised. Issues surrounding model identi cation and selection are also considered. It is argued that the proposed revised ...
متن کاملShort-term Solar Irradiance Forecasting Using Exponential Smoothing State Space Model
We forecast high resolution solar irradiance time series using an exponential smoothing state space (ESSS) model. To stationarize the irradiance data before applying linear time series models, we propose a novel Fourier trend model and compare the performance with other popular trend models using residual analysis and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) stationarity test. Using the opt...
متن کاملPrediction of global sea cucumber capture production based on the exponential smoothing and ARIMA models
Sea cucumber catch has followed “boom-and-bust” patterns over the period of 60 years from 1950-2010, and sea cucumber fisheries have had important ecological, economic and societal roles. However, sea cucumber fisheries have not been explored systematically, especially in terms of catch change trends. Sea cucumbers are relatively sedentary species. An attempt was made to explore whether the tim...
متن کاملAutomatic Time Series Forecasting: The forecast Package for R
Automatic forecasts of large numbers of univariate time series are often needed in business and other contexts. We describe two automatic forecasting algorithms that have been implemented in the forecast package for R. The first is based on innovations state space models that underly exponential smoothing methods. The second is a step-wise algorithm for forecasting with ARIMA models. The algori...
متن کامل